Nom:	Prénom :	Classe: TleOME
		le 08 / 02 / 2021

INTERROGATION de MATHÉMATIQUES

Durée : 55 minutes. Calculatrice AUTORISÉE en mode examen.

D'après Bac S 2008

Soit a et b deux entiers naturels non nuls; on appelle « réseau » associé aux entiers a et b l'ensemble des points du plan, muni d'un repère orthonormal, dont les coordonnées (x;y) sont des entiers vérifiant les conditions : $0 \le x \le a$ et $0 \le y \le b$. On note $R_{a,b}$ ce réseau.

Le but de l'exercice est de relier certaines propriétés arithmétiques des entiers x et y à des propriétés géométriques des points correspondants du réseau.

A - Représentation graphique de quelques ensembles

Dans cette question, les réponses sont attendues sans explication, sous la forme d'un graphique qui sera dûment complété sur la feuille annexe n° 1 à rendre avec la copie. Représenter graphiquement les points M(x; y) du réseau $R_{8,8}$ vérifiant :

- 1. $x \equiv 2 \pmod{3}$ et $y \equiv 1 \pmod{3}$, sur le graphique 1 de la feuille annexe
- **2.** $x + y \equiv 1$ (modulo 3), sur le graphique 2 de la feuille annexe;
- **3.** $x \equiv y$ (modulo 3), sur le graphique 3 de la feuille annexe.

B - Résolution d'une équation

On considère l'équation (E): 7x - 4y = 1, où les inconnues x et y sont des entiers relatifs.

- 1. Déterminer un couple d'entiers relatifs $(x_0; y_0)$ solution de l'équation (E).
- 2. Déterminer l'ensemble des couples d'entiers relatifs solutions de l'équation (E).
- **3.** Démontrer que l'équation (E) admet une unique solution (x; y) pour laquelle le point M(x; y) correspondant appartient au réseau $R_{4,7}$.

C - Une propriété des points situés sur la diagonale du réseau.

Si a et b sont deux entiers naturels non nuls, on considère la diagonale [OA] du réseau $R_{a,b}$, avec O(0;0) et A(a;b).

1. Démontrer que les points du segment [OA] sont caractérisés par les conditions :

$$0 \leqslant x \leqslant a$$
; $0 \leqslant y \leqslant b$; $ay = bx$.

- **2.** Démontrer que si a et b sont premiers entre eux, alors les points O et A sont les seuls points du segment [OA] appartenant au réseau $R_{a,b}$.
- 3. Démontrer que si a et b ne sont pas premiers entre eux, alors le segment [OA] contient au moins un autre point du réseau.(On pourra considérer le pgcd d des nombres a et b et poser a = da' et

Annexe 1 - À rendre avec la copie

