LOIS NORMALES : CORRECTION DE CONTINUITÉ CORRECTION

Partie 1 : calculer une valeur isolée qu'on ne peut calculer

- 1. p(Z=60) = 0 car X est une loi à densité.
- 2. $p(59.5 \le Z \le 60.5) \approx 0.004328$.

Partie 2 : valider la correction de continuité

- **1.** Espérance de Z : $255\times0,02=5,1$. Écart-type de Z : $\sqrt{255\times0,02\times(1-0,02)}=\sqrt{4,998}$. Donc $\mathbb{Z}\sim\mathcal{N}(5,1;\sqrt{4,998}^2)$.
- **2. a)** $p(X=4) \approx 0.1728$.
- **b)** $p(3.5 \le Z \le 4.5) \approx 0.1571$.
- 3. a) $p(4 \le X \le 8) \approx 0.678797$
- **b)** $p(4 \le Z \le 8) \approx 0.59136$ et $p(3.5 \le Z \le 8.5) \approx 0.69875$. C'est bien mieux avec continuité.

Partie 3: un test encore plus probant

- 1. $X \sim \mathcal{B}(50; 0,5)$.
- **2.** $p(24 \le X \le 26) = p(X=24) + p(X=25) + p(X=26) \approx 0.3282$.
- **3. a)** $p(24 \le X \le 26) \approx p(24 \le Z \le 26) \approx 0,223$ (horrible!) où $Z \sim \mathcal{N}(25; 3,5355)$.
- **b)** $p(24 \le X \le 26) \approx p(23.5 \le Z \le 26.5) \approx 0.3286$ où $Z \sim \mathcal{N}(25; 3.5355)$.