SUITES ET RAISONNEMENT PAR RÉCURRENCE 4 EXERCICES SUPPLÉMENTAIRES : <u>CORRECTION</u>

EXERCICE 1

a) Pour tout entier nature n, on a

$$2 - \frac{5}{u_n + 4} = \frac{2(u_n + 4) - 5}{u_n + 4} = \frac{2u_n + 3}{u_n + 4} = u_n.$$

b) On considère la propriété (P_n) définie par : $0 \le u_n \le 2$.

Initialisation: (P₀) est vraie: $u_0 = 0$ et $0 \le 0 < 2$;

Hérédité: supposons (P_n) vraie pour un certain entier n et montrons que (P_{n+1}) est vraie : $0 \le u_n \le 2$, d'où

$$4 \leq u_{_{n}} + 4 \leq 6 \text{ , d'où } \frac{-5}{4} \leq \frac{-5}{u_{_{n}} + 4} \leq \frac{-5}{6} \text{ , d'où } 2 - \frac{5}{4} \leq 2 - \frac{5}{u_{_{n}} + 4} \leq 2 - \frac{5}{6} \text{ , d'où } 0 < \frac{3}{4} \leq u_{_{n+1}} \leq \frac{7}{6} < 2 \text{ ; donc } (P_{n+1}) \text{ est } 2 = \frac{1}{2} + \frac{1}{2} +$$

vraie; ainsi, pour tout entier naturel n non nul, $0 \le u_n \le 2$.

c) On a
$$v_{n+1} = \frac{u_{n+1} - 1}{u_{n+1} + 3} = \frac{\frac{2u_n + 3}{u_n + 4} - 1}{\frac{2u_n + 3}{u_n + 4} + 3} = \frac{2u_n + 3 - u_n - 4}{2u_n + 3 + 3u_n + 12} = \frac{u_n - 1}{5u_n + 15} = \frac{1}{5}v_n$$
, donc la suite (v_n) est une suite géométrique

de raison 1/5 et de premier terme $v_0 = \frac{u_0 - 1}{u_0 + 3} = \frac{-1}{3}$.

d) Donc
$$v_n = \frac{-1}{3} \left(\frac{1}{5}\right)^n = \frac{-1}{3 \times 5^n}$$
.

e) On a
$$(u_n + 3)v_n = u_n - 1$$
, d'où $u_n (v_n - 1) = -3v_n - 1$, d'où $u_n = \frac{-3v_n - 1}{v_n - 1} = \frac{\frac{1}{5^n} - 1}{\frac{-1}{3 \times 5^n} - 1}$.

EXERCICE 2

- 1. a) Pour tout entier naturel n, $u_{n+1} u_n = 2n + 3 \ge 3 > 0$, donc la suite (u_n) est strictement croissante.
- b) En utilisant un raisonnement par récurrence, montrons que, pour tout entier naturel n, $u_n > n^2$:

Initialisation : pour n = 0, $u_0 = 1 > 0^2$, donc la propriété est vraie pour n = 0.

Hérédité: supposons que pour une valeur de n, $u_n > n^2$; alors $u_{n+1} = u_n + 2n + 3 > n^2 + 2n + 3 = n^2 + 2n + 1 + 2 = (n+1)^2 + 2 > (n+1)^2$. Donc l'hérédité est démontrée.

Conclusion: Pour tout entier naturel n, $u_n > n^2$.

- 2. a) Les quatre premiers termes de la suite : $u_0 = 1$, $u_1 = u_0 + 2 \times 0 + 3 = 4 = 2^2$, $u_2 = u_1 + 2 \times 1 + 3 = 9 = 3^2$, $u_3 = u_2 + 2 \times 2 + 3 = 16 = 4^2$.
- b) On conjecture que pour tout entier naturel n, $u_n = (n+1)^2$.
- c) Démontrons cette conjecture par récurrence :

Initialisation: $u_0 = 1 = (0 + 1)^2$, donc a propriété est vraie pour n = 0.

Hérédité : supposons que pour une valeur de n, $u_n = (n+1)^2$;

alors $u_{n+1} = u_n + 2n + 3 = (n+1)^2 + 2n + 3 = n^2 + 4n + 4 = (n+2)^2$. Donc l'hérédité est démontrée.

Conclusion: Pour tout entier naturel n, $u_n = (n + 1)^2$.

- 3. On considère la suite (v_n) définie sur \mathbb{N} par $v_n = u_{n+1} u_n$.
- a) On sait que $u_{n+1} = u_n + 2n + 3$, donc $v_n = u_{n+1} u_n = 2n + 3$. Donc la suite (v_n) est une suite arithmétique de raison 2 et de premier terme $v_0 = 3$.
- b) La somme des vingt premiers termes de la suite (v_n) est égale à $\sum_{k=0}^{k-19} v_k = 20 \times \frac{v_0 + v_{19}}{2} = 10(3+41) = 440$.

On peut aussi remarquer que $\sum_{k=0}^{k-19} v_k = u_{20} - u_0 = 21^2 - 1 = 440$.

EXERCICE 3

On considère la suite (u_n) définie sur \mathbb{N} par $u_0 = -2$ et $u_{n+1} = \frac{2}{3} u_n - 1$.

1. On a $v_{n+1} = u_{n+1} + 3 = \frac{2}{3}u_n - 1 + 3 = \frac{2}{3}u_n + 2 = \frac{2}{3}(u_n + 3) = \frac{2}{3}v_n$. Donc la suite (v_n) est géométrique de raison $\frac{2}{3}$, et de premier terme $v_0 = u_0 + 3 = -2 + 3 = 1$.

- 2. Donc, pour tout entier naturel n, $v_n = \left(\frac{2}{3}\right)^n$ et $u_n = v_n 3 = \left(\frac{2}{3}\right)^n 3$.
- 3. Pour tout entier naturel n, $u_{n+1} u_n = \left(\frac{2}{3}\right)^{n+1} 3 \left(\left(\frac{2}{3}\right)^n 3\right) = \left(\frac{2}{3}\right)^{n+1} \left(\frac{2}{3}\right)^n = \left(\frac{2}{3}\right)^n \left(\frac{2}{3} 1\right) = \left(\frac{2}{3}\right)^n \times \frac{-1}{3}$ qui est strictement négatif, donc $u_{n+1} u_n < 0$ et $u_{n+1} < u_n$. Ainsi la suite (u_n) est strictement décroissante.

4. On a
$$s_n = u_0 + u_1 + u_2 + ... + u_n = -2 + \frac{2}{3} - 3 + \left(\frac{2}{3}\right)^2 - 3 + ... + \left(\frac{2}{3}\right)^n - 3 = -2 + \sum_{k=1}^{k-n} \left(\frac{2}{3}\right)^k - 3n = -2 + \sum_{k=1}^{k$$

$$-2-3n+\frac{2}{3}\times\frac{1-\left(\frac{2}{3}\right)^n}{1-\frac{2}{3}}=-2-3n+2\times\left(1-\left(\frac{2}{3}\right)^n\right)=-3n-2\left(\frac{2}{3}\right)^n.$$

EXERCICE 4

1. Montrons par récurrence que, pour tout entier naturel n, $u_n > 0$:

Initialisation : pour n = 0: $u_0 = 1 > 0$, donc la propriété est vraie pour n = 0.

Hérédité : on suppose que pour un entier naturel n, $u_n > 0$ et on montre que $u_{n+1} > 0$:

$$u_{n+1} = \frac{u_n}{\sqrt{u_n^2 + 1}}$$
 avec $u_n > 0$ et $\sqrt{u_n^2 + 1} > 0$, donc $u_{n+1} > 0$. Conclusion: Pour tout entier naturel $n, u_n > 0$.

2. Pour tout entier naturel n, comme pour tout entier naturel n, $u_n > 0$; on peut comparer $\frac{u_{n+1}}{u_n}$ à 1:

$$\frac{u_{n+1}}{u_n} = \frac{u_n}{\sqrt{u_n^2 + 1}} \times \frac{1}{u_n} = \frac{1}{\sqrt{u_n^2 + 1}} \text{ Or, pour tout entier naturel } n, \quad u_n^2 + 1 > 1, \text{ d'où } \sqrt{u_n^2 + 1} > 1, \text{ donc } \frac{1}{\sqrt{u_n^2 + 1}} < 1,$$

donc $\frac{u_{n+1}}{u_n}$ < 1 et u_{n+1} < u_n ; ainsi la suite (u_n) est strictement décroissante.

3. Calcul des cinq premiers termes de la suite (u_n) :

$$u_0 = 1 \; ; \; u_1 = \frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}} \; ; \; u_2 = \frac{\frac{1}{\sqrt{2}}}{\sqrt{\frac{1}{2}+1}} = \frac{1}{\sqrt{3}} \; ; \; u_3 = \frac{\frac{1}{\sqrt{3}}}{\sqrt{\frac{1}{3}+1}} = \frac{1}{\sqrt{4}} = \frac{1}{2} \; \text{et} \; u_4 = \frac{\frac{1}{2}}{\sqrt{\frac{1}{4}+1}} = \frac{1}{\sqrt{5}} \; .$$

On conjecture que, pour tout entier naturel n, $u_n = \frac{1}{\sqrt{n+1}}$.

4. On démontre cette conjecture en utilisant un raisonnement par récurrence :

Initialisation : pour n = 0: $u_0 = 1 = \frac{1}{\sqrt{0+1}}$, donc la propriété est vraie pour n = 0.

Hérédité : on suppose que pour un entier naturel n, $u_n = \frac{1}{\sqrt{n+1}}$ et on montre que $u_{n+1} = \frac{1}{\sqrt{n+2}}$:

$$u_{n+1} = \frac{u_n}{\sqrt{u_n^2 + 1}} = \frac{\frac{1}{\sqrt{n+1}}}{\sqrt{\frac{1}{n+1} + 1}} = \frac{\frac{1}{\sqrt{n+1}}}{\sqrt{\frac{n+2}{n+1}}} = \frac{1}{\sqrt{n+2}}$$
. Conclusion: Pour tout entier nature $n, u_n = \frac{1}{\sqrt{n+1}}$.

Sources: http://dominique.frin.free.fr/