PRIMITIVES ET ÉQUATIONS DIFFÉRENTIELLES

_				
Τ	Primitive	d'une	fonction	1

II. Équations différentielles 2

II.1
$$y' = ay$$
 3

II.2 $y' = ay + b$ 3

II.3 $y' = ay + f$ 4

I. Primitive d'une fonction

DÉFINITION

Soit f une fonction définie sur un intervalle I.

On appelle primitive de f sur I toute solution de l'équation y'=f.

THÉORÈME (ADMIS MAIS DÉMONTRÉ PLUS TARD)

Toute fonction continue sur un intervalle I admet des primitives sur I.

PROPRIÉTÉ

Si F et G sont deux primitives de f , alors il existe un réel k tel que, pour tout x de I : F(x)=G(x)+k.

D /		
vem	onstration	•

EXEMPLE C1

Déterminer la primitive de la fonction définie sur \mathbb{R} par $f(x)=5x^2+3x-4$ qui s'annule en 2.

Primitives usuelles

Fonction $f : f(x) = \dots$	Une primitive $F \cdot F(x) = \dots$	Intervalle
$k \text{ (où } k \in \mathbb{R})$	k x	IR
$x^n \text{ (où } n \in \mathbb{Z} \setminus \{-1\})$		Si $n \ge 0$: \mathbb{R} Si $n \le -2$: $]-\infty;0[$ ou $]0;+\infty[$
$\frac{1}{\sqrt{x}}$]0;+∞[
e ^x		IR
$\frac{1}{x}$		$]-\infty;0[\ ou\]0;+\infty[$

Soit u une fonction dérivable sur un intervalle I.

Fonction f	Une primitive F	Conditions
$ \begin{array}{ccc} cas & u' \\ particulier & u^2 \end{array} $		u ne s'annule pas sur I
$(où n \in \mathbb{Z} \setminus \{-1\})$		Si $n < 0$: u ne s'annule pas sur I
$\frac{u'}{\sqrt{u}}$		u est strictement positive sur I
$u'e^u$		
$\frac{u'}{u} \blacktriangle^{n=-1}$		u ne s'annule pas sur I

Rappelons également que l'on a vu la formule de dérivation d'une fonction composée : $(g \circ u)' = u' \times (g' \circ u)$.

EXEMPLES C2 à C4

- 1. Déterminer une primitive de $\frac{3}{(3x+2)^2}$.
- **2.** Déterminer une primitive de $2xe^{x^2+4}$.
- **3.** Déterminer une de $(4x+2)(x^2+x+1)$.

Remarque : on dit *il existe des fonctions pour lesquelles on ne peut pas trouver une formule explicite* (qui utilise les fonctions usuelles précédemment rencontrées et les règles opératoires classiques : addition, multiplication, composition, etc.) *pour les primitives*. Par exemple, la fonction définie sur \mathbb{R} par $f(x) = e^{-x^2}$. En mathématiques (mais pas souvent en Terminale S), ces cas sont fréquents : on fait alors seulement des calculs approchés (nous y reviendrons plus tard) mais heureusement les moyens informatiques permettent maintenant des calculs rapides et une très bonne précision.

II. Équations différentielles

DÉFINITION

Une *équation différentielle* est une équation qui lie une fonction inconnue y et certaines de ses dérivées successives.

EXEMPLE C5

- y' = -4y + 7 est une équation différentielle linéaire d'ordre 1 à coefficients constants.
 - \rightarrow linéaire car l'inconnue y et sa dérivée y' ne sont pas élevées à une puissance comme un carré ou un cube, et aucune fonction n'est « devant » ces termes
 - \rightarrow d'ordre 1 car la seule dérivée qui apparaît est la dérivée première y'
 - \rightarrow à coefficients constants car -4 et 7 sont des constantes, et non pas des fonctions.
- y'=3x est une équation différentielle linéaire d'ordre 1 à coefficients constants.

En réalité, c'est un abus de notation, on devrait écrire y'=g où g(x)=3x.

• 3y''-4y=5 est une équation différentielle d'ordre 2 à coefficients constants.

II.1 y' = a y

PROPRIÉTÉ

Soit $a \in \mathbb{R}$. Les solutions sur \mathbb{R} de l'équation différentielle y' = ay sont les fonctions :

$$x \longmapsto k e^{ax}, k \in \mathbb{R}.$$

Dómo	nstration	٠
17611111	/LSL/ (LLL(//L	

EXEMPLE C6

Résoudre l'équation différentielle 3y'+4y=0.

II.2 y' = a y + b

PROPRIÉTÉS

Soient $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$. Les solutions de l'équation différentielle y' = ay + b sont les fonctions :

$$x \longmapsto k e^{ax} - \frac{b}{a}, k \in \mathbb{R}.$$

Démonstration	
Demonstration	

EXEMPLE C7

Résoudre l'équation différentielle 3y'+4y=5.

II.3 y' = a y + f

PROPRIÉTÉS

Soient $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$. Soit f une fonction définie sur un intervalle I.

Les solutions de l'équation différentielle (E) y'=ay+f sont les fonctions définies sur I :

$$x \mapsto k e^{ax} + y_0(x), k \in \mathbb{R}$$

où y_0 est une solution particulière de (E).

y'=ay est appelée équation homogène associée

Démonstration:

Exemple A1

On considère l'équation différentielle (E) : $2y'+3y=6x^2-7x+2$.

- **b.** Résoudre l'équation homogène associée à (E).
- c. En déduire toutes les solutions de l'équation différentielle (E).

p. 343 SF3

BILAN DU CHAPITRE & TRAVAIL EN AUTONOMIE ←

- Fiche bilan \rightarrow p.346
- QCM 11 questions corrigées → p.347
- Exercices corrigés → 34 à 43 p.348
- Exercices types Bac guidés & corrigés → 128 et 129 p.360
- Méthodes et exercices corrigés en vidéo : → maths-et-tiques : tsm-ped-ym