PRIMITIVES D'UNE FONCTION CONTINUE SUR UN INTERVALLE

Soit f une fonction définie sur un intervalle I.

DÉFINITION. Une fonction F définie sur I est une primitive de f sur I si:

- F est dérivable sur I
- F' = f.

Exemples:

- une primitive sur $]0;+\infty[$ de la fonction inverse $x\mapsto \frac{1}{x}$ est ...
- une primitive sur \mathbb{R} de la fonction $x \mapsto 4x^3$ est ...
- une primitive sur \mathbb{R} de la fonction $x \mapsto x^n$ ($n \in \mathbb{Z}$, $n \neq -1$) est ...

PROPRIÉTÉ.

Si une fonction F est une primitive de f, alors toute fonction G définie sur I par G(x)=F(x)+k ($k\in\mathbb{R}$) est une primitive de f sur I.

Démonstration : facile

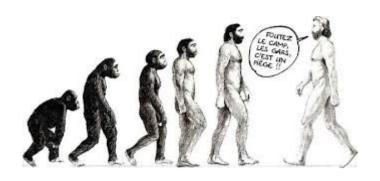
PROPRIÉTÉ RÉCIPROQUE.

Si F et G sont deux primitives de f , alors il existe un réel k tel que, pour tout x de I :

$$F(x) = G(x) + k.$$

Démonstration :

PRIMITIVES USUELLES



Fonction $f: f(x) = \dots$	Une primitive F . $F(x) =$	Intervalle
$k \text{ (où } k \in \mathbb{R})$	k x	IR .
$x^n \text{ (où } n \in \mathbb{Z} \setminus \{-1\})$		Si $n \ge 0$: \mathbb{R} Si $n \le -2$: $]-\infty;0[$ ou $]0;+\infty[$
$\frac{1}{2\sqrt{x}}$]0;+∞[
e ^x		IR
$\frac{1}{x}$		$]-\infty;0[\ ou\]0;+\infty[$

Soit *u* une fonction dérivable sur un intervalle I.

Fonction f	Une primitive F	Conditions
$\frac{u'}{u^2}$		u ne s'annule pas sur I
$(où n \in \mathbb{Z} \setminus \{-1\})$		Si $n < 0$: u ne s'annule pas sur I
$\frac{u'}{\sqrt{u}}$		u est strictement positive sur I
u'e"		
$\frac{u'}{u}$		u ne s'annule pas sur I

Remarque : il existe des fonctions pour lesquelles on ne peut pas trouver une formule explicite (qui utilise les fonctions usuelles précédemment rencontrées et les règles opératoires classiques : addition, multiplication, composition, etc.) pour les primitives. Par exemple, la fonction définie sur \mathbb{R} par $f(x)=e^{-x^2}$, que l'on rencontre en Terminale S (probabilités et statistiques).

En mathématiques (mais pas souvent en Terminale S), ces cas sont fréquents : on peut alors seulement utiliser des intégrales pour dire que la fonction définie sur [a;b] par $F(x)=\int_a^x f(t)dt$ est la primitive de f qui s'annule en a. On fait alors seulement des calculs approchés d'intégrales, mais heureusement les moyens informatiques permettent maintenant des calculs rapides et une très bonne précision.