Note:

INTERROGATION de MATHÉMATIQUES

Durée : 35 minutes. Calculatrice **NON AUTORISÉE**.

EXERCICE 1

 \approx 5 minutes

Soit $z_1 = -2i + 3$ et $z_2 = 5 - 4i$. Calculer et donner le résultat sous forme algébrique de $\frac{z_1}{z_2}$.

EXERCICE 2

 \approx 5 minutes

Déterminer la forme algébrique, la partie réelle et la partie imaginaire du complexe z défini par :

$$z = -7i^{3} - 5i + 7 - 8i - 5i^{2} + \sqrt{2} - (-3i^{2} + 4) - (-2i + 3) \times \frac{1}{3}.$$

EXERCICE 3

 \approx 5 minutes

Résoudre dans \mathbb{C} l'équation suivante : $3z^2+2z+2=0$.

EXERCICE 4

 \approx 5 minutes

- **1.** Compléter sans justifier le « triangle de Pascal » ci-dessous qui donne les $\binom{n}{p}$:
- **2.** Calculer $(2+3i)^5$ en utilisant la formule du « binôme de Newton ».
- Si besoin, voici les premières puissances de 2 et 3 :

n	2^n	3 ⁿ		
2	4	9		
3	8	27		
4	16	81		
5	32	243		

$\downarrow n p \rightarrow$	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

EXERCICE 5

 ≈ 5 minutes

Résoudre dans \mathbb{C} l'équation $z-2+i+\overline{z+i-1}=0$.

EXERCICE 6

 \approx 5 minutes

Sans utiliser la formule du « binôme de Newton », démontrer que :

si z est une solution de $(z-4)^6-(z-1)^6=3$, alors \overline{z} est aussi une solution.